|
| 1: |
|
active(from(X)) |
→ mark(cons(X,from(s(X)))) |
| 2: |
|
active(first(0,Z)) |
→ mark(nil) |
| 3: |
|
active(first(s(X),cons(Y,Z))) |
→ mark(cons(Y,first(X,Z))) |
| 4: |
|
active(sel(0,cons(X,Z))) |
→ mark(X) |
| 5: |
|
active(sel(s(X),cons(Y,Z))) |
→ mark(sel(X,Z)) |
| 6: |
|
active(from(X)) |
→ from(active(X)) |
| 7: |
|
active(cons(X1,X2)) |
→ cons(active(X1),X2) |
| 8: |
|
active(s(X)) |
→ s(active(X)) |
| 9: |
|
active(first(X1,X2)) |
→ first(active(X1),X2) |
| 10: |
|
active(first(X1,X2)) |
→ first(X1,active(X2)) |
| 11: |
|
active(sel(X1,X2)) |
→ sel(active(X1),X2) |
| 12: |
|
active(sel(X1,X2)) |
→ sel(X1,active(X2)) |
| 13: |
|
from(mark(X)) |
→ mark(from(X)) |
| 14: |
|
cons(mark(X1),X2) |
→ mark(cons(X1,X2)) |
| 15: |
|
s(mark(X)) |
→ mark(s(X)) |
| 16: |
|
first(mark(X1),X2) |
→ mark(first(X1,X2)) |
| 17: |
|
first(X1,mark(X2)) |
→ mark(first(X1,X2)) |
| 18: |
|
sel(mark(X1),X2) |
→ mark(sel(X1,X2)) |
| 19: |
|
sel(X1,mark(X2)) |
→ mark(sel(X1,X2)) |
| 20: |
|
proper(from(X)) |
→ from(proper(X)) |
| 21: |
|
proper(cons(X1,X2)) |
→ cons(proper(X1),proper(X2)) |
| 22: |
|
proper(s(X)) |
→ s(proper(X)) |
| 23: |
|
proper(first(X1,X2)) |
→ first(proper(X1),proper(X2)) |
| 24: |
|
proper(0) |
→ ok(0) |
| 25: |
|
proper(nil) |
→ ok(nil) |
| 26: |
|
proper(sel(X1,X2)) |
→ sel(proper(X1),proper(X2)) |
| 27: |
|
from(ok(X)) |
→ ok(from(X)) |
| 28: |
|
cons(ok(X1),ok(X2)) |
→ ok(cons(X1,X2)) |
| 29: |
|
s(ok(X)) |
→ ok(s(X)) |
| 30: |
|
first(ok(X1),ok(X2)) |
→ ok(first(X1,X2)) |
| 31: |
|
sel(ok(X1),ok(X2)) |
→ ok(sel(X1,X2)) |
| 32: |
|
top(mark(X)) |
→ top(proper(X)) |
| 33: |
|
top(ok(X)) |
→ top(active(X)) |
|
There are 49 dependency pairs:
|
| 34: |
|
ACTIVE(from(X)) |
→ CONS(X,from(s(X))) |
| 35: |
|
ACTIVE(from(X)) |
→ FROM(s(X)) |
| 36: |
|
ACTIVE(from(X)) |
→ S(X) |
| 37: |
|
ACTIVE(first(s(X),cons(Y,Z))) |
→ CONS(Y,first(X,Z)) |
| 38: |
|
ACTIVE(first(s(X),cons(Y,Z))) |
→ FIRST(X,Z) |
| 39: |
|
ACTIVE(sel(s(X),cons(Y,Z))) |
→ SEL(X,Z) |
| 40: |
|
ACTIVE(from(X)) |
→ FROM(active(X)) |
| 41: |
|
ACTIVE(from(X)) |
→ ACTIVE(X) |
| 42: |
|
ACTIVE(cons(X1,X2)) |
→ CONS(active(X1),X2) |
| 43: |
|
ACTIVE(cons(X1,X2)) |
→ ACTIVE(X1) |
| 44: |
|
ACTIVE(s(X)) |
→ S(active(X)) |
| 45: |
|
ACTIVE(s(X)) |
→ ACTIVE(X) |
| 46: |
|
ACTIVE(first(X1,X2)) |
→ FIRST(active(X1),X2) |
| 47: |
|
ACTIVE(first(X1,X2)) |
→ ACTIVE(X1) |
| 48: |
|
ACTIVE(first(X1,X2)) |
→ FIRST(X1,active(X2)) |
| 49: |
|
ACTIVE(first(X1,X2)) |
→ ACTIVE(X2) |
| 50: |
|
ACTIVE(sel(X1,X2)) |
→ SEL(active(X1),X2) |
| 51: |
|
ACTIVE(sel(X1,X2)) |
→ ACTIVE(X1) |
| 52: |
|
ACTIVE(sel(X1,X2)) |
→ SEL(X1,active(X2)) |
| 53: |
|
ACTIVE(sel(X1,X2)) |
→ ACTIVE(X2) |
| 54: |
|
FROM(mark(X)) |
→ FROM(X) |
| 55: |
|
CONS(mark(X1),X2) |
→ CONS(X1,X2) |
| 56: |
|
S(mark(X)) |
→ S(X) |
| 57: |
|
FIRST(mark(X1),X2) |
→ FIRST(X1,X2) |
| 58: |
|
FIRST(X1,mark(X2)) |
→ FIRST(X1,X2) |
| 59: |
|
SEL(mark(X1),X2) |
→ SEL(X1,X2) |
| 60: |
|
SEL(X1,mark(X2)) |
→ SEL(X1,X2) |
| 61: |
|
PROPER(from(X)) |
→ FROM(proper(X)) |
| 62: |
|
PROPER(from(X)) |
→ PROPER(X) |
| 63: |
|
PROPER(cons(X1,X2)) |
→ CONS(proper(X1),proper(X2)) |
| 64: |
|
PROPER(cons(X1,X2)) |
→ PROPER(X1) |
| 65: |
|
PROPER(cons(X1,X2)) |
→ PROPER(X2) |
| 66: |
|
PROPER(s(X)) |
→ S(proper(X)) |
| 67: |
|
PROPER(s(X)) |
→ PROPER(X) |
| 68: |
|
PROPER(first(X1,X2)) |
→ FIRST(proper(X1),proper(X2)) |
| 69: |
|
PROPER(first(X1,X2)) |
→ PROPER(X1) |
| 70: |
|
PROPER(first(X1,X2)) |
→ PROPER(X2) |
| 71: |
|
PROPER(sel(X1,X2)) |
→ SEL(proper(X1),proper(X2)) |
| 72: |
|
PROPER(sel(X1,X2)) |
→ PROPER(X1) |
| 73: |
|
PROPER(sel(X1,X2)) |
→ PROPER(X2) |
| 74: |
|
FROM(ok(X)) |
→ FROM(X) |
| 75: |
|
CONS(ok(X1),ok(X2)) |
→ CONS(X1,X2) |
| 76: |
|
S(ok(X)) |
→ S(X) |
| 77: |
|
FIRST(ok(X1),ok(X2)) |
→ FIRST(X1,X2) |
| 78: |
|
SEL(ok(X1),ok(X2)) |
→ SEL(X1,X2) |
| 79: |
|
TOP(mark(X)) |
→ TOP(proper(X)) |
| 80: |
|
TOP(mark(X)) |
→ PROPER(X) |
| 81: |
|
TOP(ok(X)) |
→ TOP(active(X)) |
| 82: |
|
TOP(ok(X)) |
→ ACTIVE(X) |
|
The approximated dependency graph contains 8 SCCs:
{55,75},
{57,58,77},
{54,74},
{56,76},
{59,60,78},
{62,64,65,67,69,70,72,73},
{41,43,45,47,49,51,53}
and {79,81}.